泓泰

工业机器人机械结构如何指定标准,工业机器人的基本组成结构与原理实验报告

admin

本文目录一览

现有一控制系统框图如图(a)所示,已知 , ,完成下列工作: ①求图a所示系统的稳态误差; ②试说明在图a

基于DSP运动控制器的5R工业机器人系统设计
摘要:以所设计的开放式5R关节型工业机器人为研究对象,分析了该机器人的结构设计。该机器人采
用基于工控PC及DSP运动控制器的分布式控制结构,具有开放性强、运算速度快等特点,对其工作原理
进行了详细的说明。机器人的控制软件采用基于Windows平台下的VC 实现,具有良好的人机交互
功能,对各组成模块的作用进行了说明。所设计的开放式5R工业机器人系统,具有较好的实用性。
关键词:开放式;关节型;工业机器人;控制软件
0引言
工业机器人技术在现代工业生产自动化领域得到
了广泛的应用,也对工程技术人员提出更高的要求,作
为机械工程及自动化专业的技术人才迫切需要掌握这

先进技术。为了能更好地加强技术人员对工业机器
人的技能实践与技术掌握,需要开放性强的设备来满
足要求。本文阐述了我们所开发设计的一种5R关节
型工业机器人系统,可以作为通用的工业机器人应用
于现场,也可作为教学培训设备。
1 5R工业机器人操作机结构设计
关节型工业机器人由2个肩关节和1个肘关节进
行定位,由2个或3个腕关节进行定向,其中一个肩关节
绕铅直轴旋转,另一个肩关节实现俯仰,这两个肩关节
轴线正交。肘关节平行于第二个肩关节轴线。这种构
型的机器人动作灵活、工作空间大,在作业空间内手臂
的干涉最小,结构紧凑,占地面积小,关节上相对运动部
位容易密封防尘,但运动学复杂、运动学反解困难,控制
时计算量大。在工业用应用是一种通用型机器人¨。
1.1 5R工业机器人操作机结构
所设计的5R关节型机器人具有5个自由度,结构
简图如图1所示。5个自由度分别是:肩部旋转关节
J1、大臂旋转关节J2、小臂旋转关节J3、手腕仰俯运动
关节J4和在旋转运动关节J5。总体设计思想为:选用
伺服电机(带制动器)驱动,通过同步带、轮系等机械机
构进行间接传动。腕关节上设计有装配手爪用法兰,
通过不断地更换手爪来实现不同的作业任务。
1.2 5R工业机器人参数
表1为设计的5R工业机器人参数。
2 5R工业机器人开放式控制系统
机器人控制技术对其性能的优良起着重大的作用。随着机器人控制技术的发展,针对结构封闭的机
器人控制器的缺陷,开发“具有开发性结构的模块化、
标准化机器人控制器”是当前机器人控制器发展的趋
势]。为提高稳定性、可靠性和抗干扰性,采用“工业
PC DSP运动控制器”的结构来实现机器人的控制:伺
服系统中伺服级计算机采用以信号处理器(DSP)为核
心的多轴运动控制器,借助DSP高速信号处理能力与
运算能力,可同时控制多轴运动,实现复杂的控制算法
并获得优良的伺服性能。
2.1基于DSP的运动控制器MCT8000F8简介
深圳摩信科技公司MCT8000F8运动控制器是基
于网络技术的开放式结构高性能DSP8轴运动控制器,
包括主控制板、接口板以及控制软件等,具有开放式、
高速、高精度、网际在线控制、多轴同步控制、可重构
性、高集成度、高可靠性和安全性等特点,是新一代开
放式结构高性能可编程运动控制器。
图2为DSP多轴运动控制器硬件原理图。图中增
量编码器的A0(/A0)、B0(/B0)、c0(/CO)信号作为
位置反馈,运动控制器通过四倍频、加减计数器得到实
际的位置,实际位置信息存在位置寄存器中,计算机可
以通过控制寄存器进行读取。运动控制卡的目标位置
由计算机通过机器人运动轨迹规划求得,通过内部计
算得到位置误差值,再经过加减速控制和数字滤波后,
送到D/A转换(DAC)、运算放大器、脉宽调制器
(PWM)硬件处理电路,转化后输出伺服电机的控制信
号或PWM信号。各个关节可以完成独立伺服控制,能
够实现线性插补控制、二轴圆弧插补控制。
2.2机器人控制系统结构及工作原理
基于PC的Windows操作系统,因其友好的人机界
面和广泛的用户基础,而成为基于PC控制器的首选。
采用PC作为机器人控制器的主机系统的优点是:①成
本低;②具有开放性;③完备的软件开发环境和丰富的
软件资源;④良好的通讯功能。机器人控制结构上采
用了上、下两级计算机系统完成对机器人的控制:上级
主控计算机负责整个系统管理,下级则实现对各个关
节的插补运算和伺服控制。这里通过采用一台工业
PC DSP运动控制卡的结构来实现机器人控制。实验
结果证明了采用Pc DSP的计算结构可以充分利用
DSP运算的高速性,满足机器人控制的实时需求,实现
较高的运动控制性能。
机器人伺服系统框图如图3所示。伺服系统由基
于DSP的运动控制器、伺服驱动器、伺服电动机及光电
编码器组成。伺服系统包含三个反馈子系统:位置环、
速度环、电流环,其工作原理如下:执行元件为交流伺
服电动机,伺服驱动器为速度、电流闭环的功率驱动元
件,光电编码器担负着检测伺服电机速度和位置的任
务。伺服级计算机的主要功能是接受控制级发出的各
种运动控制命令,根据位置给定信号及光电编码器的
位置反馈信号,分时完成各关节的误差计算、控制算法
及D/A转换、将速度给定信号加至伺服组件的控制端
子,完成对各关节的位置伺服控制。管理级计算机采用
586工控机(或便携笔记本),主要完成离线编程、仿真、
与控制级通讯、作业管理等功能;控制级计算机采用586
工控机,主要完成用户程序编辑、用户程序解释,向下位
机运动控制器发机器人运动指令、实时监控、输入输出
控制(如打印)等。示教盒通过控制级计算机可以获得
机器人伺服系统中的数据(脉冲、转角),并用于控制级
计算机控制软件中实现对机器人的示教及控制。
3 5R工业机器人运动控制软件设计
5R工业机器人控制软件采用C Builder编程,
最终软件运行在Windows环境下。C Builder对在
Windows平台下开发应用程序时所涉及到的图形用户
界面(GUI)编程具有很强的支持能力,提供了可视化
的开发环境,可以方便调用硬件厂商提供的底层函数,
直接对硬件进行操作,而且生成目标代码效率高。
所设计的控制软件为分级式模块化结构。
管理级主模块具有离线编程、图形仿真、资料查询
及故障诊断等功能,其结构如图4所示。
(1)离线编程模块利用计算机图形学的成果,建立
机器人及其工作环境的模型,利用规划算法,通过对图
形和对象的操作,编制各种运动控制,在离线情况下生
成工作程序。
(2)图形仿真模块可预先模拟结果,便于检查及优
化。
(3)资料查询模块可以查阅当日工作及近期工作
记录、相关资料(生产数量、班次等),并可以打印输出
存档。
(4)故障诊断模块可以实时故障诊断,以代码形式显
示出故障类型,并为技术人员排除故障提供帮助信息。
控制级主模块软件结构如图5所示。
(1)复位模块使得机器人停机时或动作异常时,通
过特定的操作或自动的方式,使机器人回到作业原点。
机器人在作业原点,机构的各运动副所受力矩最小,它
确定了机器人待机的安全位姿。
(2)系统提供两种示教方法。第一种示教方法即
“下位机 示教盒”的示教方法:示教盒和下位机操作
界面上的手动操作开关分别对应着装配机器人的各种
动作和功能。通过高、中、低速、点动等速度档次的选
择,对机器人进行大致的定位和精确的位置微调。并
存储期望的运动轨迹上机器人的位置、姿态参数。第
二种方法即离线仿真的示教方法。这种示教方法是在
计算机上建立起机器人作业环境的模型,再在这个模
型的基础上生成示教数据的一种应用人工智能的示教
方法。进行示教时使用计算机图示的方法分析机器人与作业模型的位置关系,也可以通过特定指令指定机
器人的运动位置…。
4结束语
所开发的开放式工业机器人系统具有以下特点:
(1)采用分布式二级控制结构,运动控制由基于
DSP的运动控制器M'CT8000F8完成,增加了系统的开
放性,以及运行处理的快速性及可靠性。
(2)考虑到具有良好的通用性,可以作为通用机器
人使用,具有较好的产业化、商品化前景。
(3)计算机辅助软件采用基于Windows平台的
c 编程,通过调用底层函数可以对硬件进行直接操
作,可视化环境可提供良好的人机交互操作界面。
通过本机器人系统的研究开发,可极大地满足工
业现场对机器人的开放性要求,进一步提高我国工矿
企业自动化水平。同时,也可作为机器人技术训练平
台,加强工程人员能力锻炼。
[参考文献]
[1]马香峰,等.工业机器人的操作机设计[M].北京:冶金工
业出版社,1996.
[2]吴振彪.工业机器人[M].武汉:华中理工大学出版社,
2006.
[3]蔡自兴.机器人学[M].北京:清华大学出版社,2003.
[4]王天然,曲道奎.工业机器人控制系统的开放体系结构
[J].机器人,2002,24(3):256—261.
[5]深圳摩信科技有限公司.MCT8000系列控制器使用手册
[z].深圳:深圳摩信科技有限公司,2001.
[6]张兴国.环保压缩机装配机器人的运动学分析[J].南通
工学院学报,2004(1):32—34,38.
[7]张兴国.计算机辅助环保压缩机装配机器人运动学分析
[J].机械设计与制造,2005(3):98—100,
[8]本书编写委员会编著.程序设计VisualC 6[M].北京:
电子工业出版社,2000.
[9]吴斌,等.OpenGL编程实例与技巧[M].北京:人民邮电出
版社,1999.
[10]江早.OpenGLVC/VB图形编程[M】.北京:中国科学技
术出版社,2001.
[11]韩军,等.6R机器人运动学控制实验系统的研制[J].实
验室研究与探索,2003(5):103—104.

工业机器人机械系统总体设计主要包括哪几个方面的内容

工业机器人机械结构如何指定标准,工业机器人的基本组成结构与原理实验报告-第1张-游戏信息-泓泰

1、开放性模块化的控制系统体系结构:采用分布式CPU计算机结构,分为机器人控制器(RC),运动控制器(MC),光电隔离I/O控制板、传感器处理板和编程示教盒等。

2、模块化层次化的控制器软件系统:软件系统建立在基于开源的实时多任务操作系统Linux上,采用分层和模块化结构设计,以实现软件系统的开放性。

3、机器人的故障诊断与安全维护技术:通过各种信息,对机器人故障进行诊断,并进行相应维护,是保证机器人安全性的关键技术。

4、网络化机器人控制器技术:当前机器人的应用工程由单台机器人工作站向机器人生产线发展,机器人控制器的联网技术变得越来越重要。可用于机器人控制器之间和机器人控制器同上位机的通讯,便于对机器人生产线进行监控、诊断和管理。

扩展资料:

机器人本体,其臂部一般采用空间开链连杆机构,其中的运动副(转动副或移动副)常称为关节,关节个数通常即为机器人的自由度数。

根据关节配置型式和运动坐标形式的不同,机器人执行机构可分为直角坐标式、圆柱坐标式、极坐标式和关节坐标式等类型。出于拟人化的考虑,常将机器人本体的有关部位分别称为基座、腰部、臂部、腕部、手部(夹持器或末端执行器)和行走部(对于移动机器人)等。

参考资料来源:百度百科-工业机器人

工业机器人设计流程

机器人家上了解到,工业机器人是一种自动化程度很高的机械产品,其设计流程即应该符合机械产品设计的一般流程,又具有其特殊性。
这里主要讨论工业机器人的机械系统设计,并且关注的是其设计流程,工业机器人机械系统的设计阶段可大致分为总体设计和详细设计。
机械系统总体设计是机器人设计的关键阶段,很大程度上决定了产品的技术性能、经济指标、外观造型。
总体结构设计可分为功能原理设计和结构总体设计两个阶段,主要内容包括功能设计、原理方案设计、总体布局、主要技术参数的确定及技术分析等内容。
对于机器人来说其机械系统总体设计主要内容有:确定基本参数、选择运动方式、手臂配置形式(构型)、驱动方式和机械结构设计等,具体如下:
(1) 根据机器人工作任务和目的来确定机器人本体的基本构型、驱动和控制方式、自由度数目。
(2) 根据机器人的共作任务、工作场地的空间布置等来确定机器人的工作空间。
(3) 根据机器人的工作任务来对机器人进行动作规划、制定各自由度的工作节拍、分配各动作时间,初步确定各自由度的运动速度。
(4) 根据机器人的工作空间,初步确定机器人各部分(各臂)的长度尺寸。
(5) 对机器人进行初步受力分析,根据受力分析结果及各关节的运动速度, 选择各关节驱动部件的基本参数(电动机和减速器的选型计算),对于速度较低的可以进行静力( Statics)分析,对于速度较高的机械,各构件的惯性力影响比较大,要进行动力学分析(Dynamics)。
(6) 根据工作要求确定机器人的定位精度。定位精度取决于机器人的定位方式、运动速度、控制方式、机器人手臂的刚度等。
(7) 根据技术要求等确定各零件的材料和结构及加工工艺;然后验算各构件的机械强度、驱动功率和最大负载重量,验算机器人各关键部件的使用寿命。初步确定各构件的机械结构。
(8) 把机器人机械系统总体设计编写成文,编制技术(设计)任务书,并绘制系统总图(草图)、简图(草图)。
经过以上过程,完成了机器人机械系统的总体设计,接下来还需要对机器哦人机械系统进行像是设计计算,过程如下:
(1) 对关键零部件的结构进行详细设计,并对主要零部件结构、材料、关键工艺进行实验。
(2) 编写设计计算说明书,绘制主要零部件草图。
(3) 全部零件设计及编制设计文件。 以上是工业机器人机械系统设计的一般流程,通过本阶段的设计和计算,可以初步确定机器人各构件的结构、材料、工艺的要求等,完成设计算及必要的实验,完成编制全部构件的图样和设计文件。
此外,以上各步骤常需要互相配合、交叉进行。设计工作也需要多次修改,逐步逼近,一遍设计出技术先进可靠、经济合理造型美观的工业机器人。
在机器人的总体参数完成之后,就可以进行机器人驱动系统的设计计算了,驱动系统的设计除了确定驱动方式外,还需要确定驱动系统的具体参数。
在选择伺服电机和精密减速之前,还需要清楚工业机器人对驱动电机的要求,以便根据要求选择机器人的伺服电机和精密减速器,工业机器人对伺服电机的要求有:
(1) 快速性。伺服电动机从获得指令信号到完成指令所要求的动作的时间要短。响应信号的时间越短,电机私服系统的灵敏性越高,快速响应性越好,一般是以伺服电机的机电时间常数的大小来说明伺服电动机快速响应的性能。
(2) 伺服电机的启动转矩与电动机本身惯量之比大。在机器人驱动负载时,要求机器人伺服电机驱动力矩大,转动惯量小。
(3) 控制特性的连续性和直线性。随着控制信号的变化,电动的转速能够连续的变化,有时候还需转速与控制信号成正比或近似正比。
(4) 调速范围宽。能应用与1:1000—1:10000的调速范围。
(5) 体积小、质量小、轴向尺寸小。
(6) 能经受起苛刻的运行条件,可进行频繁的正反转和加减速运行,并能在短时间内有较好的过载能力。 机器人的减速器应具有刚度大、输出转矩高、减速比范围大,回程间隙小、润滑好等特点。 当前RV减速器、谐波减速器、摆线针轮减速器、行星齿轮减速器等均可以用于工业机器人,其中具有扁平结构的高精度减速器更符合工业机器人的要求而广泛应用于工业机器人中。

工业机器人涉及那些技术

四、工业机器人关键技术1.机器人基本系统构成工业机器人由3大部分6个子系统组成。3大部分是机械部分、传感部分和控制部分。6个子系统可分为机械结构系统、驱动系统、感知系统、机器人环境交互系统、人机交互系统和控制系统。
工业机器人系统构成1)工业机器人的机械结构系统由机座、手臂、末端操作器三大部分组成,每一个大件都有若干个自由度的机械系统。若基座具备行走机构,则构成行走机器人;若基座不具备行走及弯腰机构,则构成单机器人臂。手臂一般由上臂、下臂和手腕组成。末端操作器是直接装在手腕上的一个重要部件,它可以是二手指或多手指的手抓,也可以是喷漆枪、焊具等作业工具。2)驱动系统,要使机器人运作起来,需要在各个关节即每个运动自由度上安置传动装置,这就是驱动系统。驱动系统可以是液压传动、气压传动、电动传动、或者把它们结合起来应用综合系统,可以是直接驱动或者通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接传动。3)感知系统由内部传感器模块和外部传感器模块组成,用以获得内部和外部环境状态中有意义的信息。智能传感器的使用提高了机器人的机动性、适应性和智能化的水准。人类的感受系统对感知外部世界信息是极其灵巧的,然而,对于一些特殊的信息,传感器比人类的感受系统更有效。4)机器人环境交换系统是现代工业机器人与外部环境中的设备互换联系和协调的系统。工业机器人与外部设备集成为一个功能单元,如加工单元、焊接单元、装配单元等。当然,也可以是多台机器人、多台机床或设备、多个零件存储装置等集成为一个去执行复杂任务的功能单元。5)人机交换系统是操作人员与机器人控制并与机器人联系的装置,例如,计算机的标准终端,指令控制台,信息显示板,危险信号报警器等。该系统归纳起来分为两大类:指令给定装置和信息显示装置。6)机器人控制系统是机器人的大脑,是决定机器人功能和性能的主要因素。控制系统的任务是根据机器人的作业指令程序以及传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能。假如工业机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。根据控制原理,控制系统可分为程序控制系统、适应性控制系统和人工智能控制系统。根据控制运行的形式,控制系统可分为点位控制和轨迹控制。点位型只控制执行机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业;连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。控制系统的任务是根据机器人的作业指令程序以及传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能。假如工业机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。根据控制原理,控制系统可分为程序控制系统、适应性控制系统和人工智能控制系统。根据控制运行的形式,控制系统可分为点位控制和轨迹控制。一套完整的工业机器人包括机器人本体、系统软件、控制柜、外围机械设备、CCD视觉、夹具/抓手、外围设备PLC控制柜、示教器/示教盒。
工业机器人设备下面重点对机器人的驱动系统、感知系统作出介绍。2.机器人的驱动系统工业机器人的驱动系统,按动力源分为液压,气动和电动三大类。根据需要也可由这三种基本类型组合成复合式的驱动系统。这三类基本驱动系统的各有自己的特点。液压驱动系统:由于液压技术是一种比较成熟的技术。它具有动力大、力(或力矩)与惯量比大、快速响应高、易于实现直接驱动等特点。适于在承载能力大,惯量大以及在防焊环境中工作的这些机器人中应用。但液压系统需进行能量转换(电能转换成液压能),速度控制多数情况下采用节流调速,效率比电动驱动系统低。液压系统的液体泄泥会对环境产生污染,工作噪声也较高。因这些弱点,近年来,在负荷为100kg以下的机器人中往往被电动系统所取代。青岛华东工程机械有限公司研制的全液压重载机器人如图所示。其大跨度的承载可达到2000kg,机器人的活动半径可达到近6m,应用在铸锻行业。
全液压重载机器人
气压驱动具有速度快、系统结构简单、维修方便、价格低等优点。但是由于气压装置的工作压强低,不易精确定位,一般仅用于工业机器人末端执行器的驱动。气动手抓、旋转气缸和气动吸盘作为末端执行器可用于中、小负荷的工件抓取和装配。气动吸盘和气动机器人手爪如图所示。
气动吸盘和气动机器人手爪电机驱动是现代工业机器人的一种主流驱动方式,分为4大类电机:直流伺服电机、交流伺服电机、步进电机和直线电机。直流伺服电机和交流伺服电机采用闭环控制,一般用于高精度、高速度的机器人驱动;步进电机用于精度和速度要求不高的场合,采用开环控制;直线电机及其驱动控制系统在技术上已日趋成熟,已具有传统传动装置无法比拟的优越性能,例如适应非常高速和非常低速应用、高加速度,高精度,无空回、磨损小、结构简单、无需减速机和齿轮丝杠联轴器等。鉴于并联机器人中有大量的直线驱动需求,因此直线电机在并联机器人领域已经得到了广泛应用。3.机器人的感知系统机器人感知系统把机器人各种内部状态信息和环境信息从信号转变为机器人自身或者机器人之间能够理解和应用的数据、信息,除了需要感知与自身工作状态相关的机械量,如位移、速度、加速度、力和力矩外,视觉感知技术是工业机器人感知的一个重要方面。视觉伺服系统将视觉信息作为反馈信号,用于控制调整机器人的位置和姿态。这方面的应用主要体现在半导体和电子行业。机器视觉系统还在质量检测、识别工件、食品分拣、包装的各个方面得到了广泛应用。通常,机器人视觉伺服控制是基于位置的视觉伺服或者基于图像的视觉伺服,它们分别又称为三维视觉伺服和二维视觉伺服,这两种方法各有其优点和适用性,同时也存在一些缺陷,于是有人提出了2.5维视觉伺服方法。基于位置的视觉伺服系统,利用摄像机的参数来建立图像信息与机器人末端执行器的位置/姿态信息之间的映射关系,实现机器人末端执行器位置的闭环控制。末端执行器位置与姿态误差由实时拍摄图像中提取的末端执行器位置信息与定位目标的几何模型来估算,然后基于位置与姿态误差,得到各关节的新位姿参数。基于位置的视觉伺服要求末端执行器应始终可以在视觉场景中被观测到,并计算出其三维位置姿态信息。消除图像中的干扰和噪声是保证位置与姿态误差计算准确的关键。二维视觉伺服通过摄像机拍摄的图像与给定的图像(不是三维几何信息)进行特征比较,得出误差信号。然后,通过关节控制器和视觉控制器和机器人当前的作业状态进行修正,使机器人完成伺服控制。相比三维视觉伺服,二维视觉伺服对摄像机及机器人的标定误差具有较强的鲁棒性,但是在视觉伺服控制器的设计时,不可避免地会遇到图像雅克比矩阵的奇异性以及局部极小等问题。针对三维和二维视觉伺服方法的局限性,F.Chaumette等人提出了2.5维视觉伺服方法。它将摄像机平动位移与旋转的闭环控制解耦,基于图像特征点,重构物体三维空间中的方位及成像深度比率,平动部分用图像平面上的特征点坐标表示。这种方法能成功地把图像信号和基于图像提取的位姿信号进行有机结合,并综合他们产生的误差信号进行反馈,很大程度上解决了鲁棒性、奇异性、局部极小等问题。但是,这种方法仍存在一些问题需要解决,如怎样确保伺服过程中参考物体始终位于摄像机视野之内,以及分解单应性矩阵时存在解不唯一等问题。在建立视觉控制器模型时,需要找到一种合适的模型来描述机器人的末端执行器和摄像机的映射关系。图像雅克比矩阵的方法是机器人视觉伺服研究领域中广泛使用的一类方法。图像的雅克比矩阵是时变的,所以,需要在线计算或估计。4.机器人关键基础部件机器人共4大组成部分,本体成本占22%,伺服系统占24%,减速器占36%,控制器占12%。机器人关键基础部件是指构成机器人传动系统,控制系统和人机交互系统,对机器人性能起到关键影响作用,并具有通用性和模块化的部件单元。机器人关键基础部件主要分成以下三部分:高精度机器人减速机,高性能交直流伺服电机和驱动器,高性能机器人控制器等。1)减速机减速机是机器人的关键部件,目前主要使用两种类型的减速机:谐波齿轮减速机和RV减速机。

谐波传动方法由美国发明家C.WaltMusser于20世纪50年代中期发明。谐波齿轮减速机主要由波发生器、柔性齿轮和刚性齿轮3个基本构件组成,依靠波发生器使柔性齿轮产生可控弹性变形,并与刚性齿轮相啮合来传递运动和动力,单级传动速比可达70~1000,借助柔轮变形可做到反转无侧隙啮合。与一般减速机比较,输出力矩相同时,谐波齿轮减速机的体积可减小2/3,重量可减轻1/2。柔轮承受较大的交变载荷,因而其材料的抗疲劳强度、加工和热处理要求较高,制造工艺复杂,柔轮性能是高品质谐波齿轮减速机的关键。
谐波齿轮减速机传动原理德国人LorenzBaraen于1926年提出摆线针轮行星齿轮传动原理,日本帝人株式会社(TEIJINSEIKICo.,Ltd)于20世纪80年代率先开发了RV减速机。RV减速机由一个行星齿轮减速机的前级和一个摆线针轮减速机的后级组成。相比于谐波齿轮减速机,RV减速机具有更好的回转精度和精度保持性。
减速机陈仕贤发明了活齿传动技术。第四代活齿传动——全滚动活齿传动(oscillatory roller transmission,ORT)已成功地应用到多种工业产品中。在ORT基础上提出的复式滚动活齿传动(compound oscillatory roller transmission,CORT)不但具有RV传动类似的优点,而且克服了RV传动曲轴轴承受力大、寿命低的缺点,进一步提高了使用寿命和承载能力;CORT的结构使其在同样的精度指标下回差更小,运动精度和刚度更高,缓解了RV传动要求制造精度高的缺陷,可相对降低加工要求,减少制造成本。CORT是我国自主开发的,拥有自主知识产权。鞍山耐磨合金研究所和浙江恒丰泰减速机制造有限公司均开发成功了机器人用CORT减速机。
ORT减速机 CORT减速机目前在高精度机器人减速机方面,市场份额的75%均两家日本减速机公司垄断,分别为提供RV摆线针轮减速机的日本Nabtesco和提供高性能谐波减速机的日本Harmonic Drive。包括 ABB, FANUC, KUKA,MOTOMAN在内国际主流机器人厂商的减速机均由以上两家公司提供,与国内机器人公司选择的通用机型有所不同的是,国际主流机器人厂商均与上述两家公司签订了战略合作关系,提供的产品大部分为在通用机型基础上根据各厂商的特殊要求进行改进后的专用型号。国内在高精度摆线针轮减速机方面研究起步较晚,仅在部分院校,研究所有过相关研究。目前尚无成熟产品应用于工业机器人。近年来国内部分厂商和院校开始致力高精度摆线针轮减速机的国产化和产业化研究,如浙江恒丰泰,重庆大学机械传动国家重点实验室,天津减速机厂,秦川机床厂,大连铁道学院等。在谐波减速机方面,国内已有可替代产品,如北京中技克美,北京谐波传动所,但是相应产品在输入转速,扭转高度,传动精度和效率方面与日本产品还存在不小的差距,在工业机器人上的成熟应用还刚刚起步。国内外工业机器人主流高精度谐波减速机性能比较如下表所示。
表1 主流高精度谐波减速机性能比较注:上表比较数据来自相近型号:HD :CSF-17-100中技克美:XB1-40-100传动效率测试工况:输入转速1000r/min,温度40°扭转刚度测试条件:20%额定扭矩内国内外工业机器人主流高精度摆线针轮减速机性能比较如下表所示。
表2 主流高精度RV摆线针轮减速机性能比较注:上表比较数据来自相近型号:RV:100CCYCLO:F2CF-C35传动效率测试工况:输出转速15r/min,额定扭矩2)伺服电机在伺服电机和驱动方面,目前欧系机器人的驱动部分主要由伦茨,Lust,博世力士乐等公司提供,这些欧系电机及驱动部件过载能力,动态响应好,驱动器开放性强,且具有总线接口,但是价格昂贵。而日系品牌工业机器人关键部件主要由安川,松下,三菱等公司提供,其价格相对降低,但是动态响应能力较差,开放性较差,且大部分只具备模拟量和脉冲控制方式。国内近年来也开展了大功率交流永磁同步电机及驱动部分基础研究和产业化,如哈尔滨工业大学,北京和利时,广州数控等单位,并且具备了一点的生产能力,但是其动态性能,开放性和可靠性还需要更多的实际机器人项目应用进行验证。
3)控制器在机器人控制器方面,目前国外主流机器人厂商的控制器均为在通用的多轴运动控制器平台基础上进行自主研发。目前通用的多轴控制器平台主要分为以嵌入式处理器(DSP,POWER PC)为核心的运动控制卡和以工控机加实时系统为核心的PLC系统,其代表分别是Delta Tau的PMAC卡和Beckhoff的TwinCAT系统。国内的在运动控制卡方面,固高公司已经开发出相应成熟产品,但是在机器人上的应用还相对较少。5.机器人操作系统通用的机器人操作系统(robot operating system,ROS)是为机器人而设计的标准化的构造平台,它使得每一位机器人设计师都可以使用同样的操作系统来进行机器人软件开发。ROS将推进机器人行业向硬件、软件独立的方向发展。硬件、软件独立的开发模式,曾极大促进了PC、笔记本电脑和智能手机技术的发展和快速进步。ROS的开发难度比计算机操作系统更大,计算机只需要处理一些定义非常明确的数学运算任务,而机器人需要面对更为复杂的实际运动操作。ROS提供标准操作系统服务,包括硬件抽象、底层设备控制、常用功能实现、进程间消息以及数据包管理。ROS分成两层,低层是操作系统层,高层则是用户群贡献的机器人实现不同功能的各种软件包。现有的机器人操作系统架构主要有基于linux的Ubuntu开源操作系统。另外,斯坦福大学、麻省理工学院、德国慕尼黑大学等机构已经开发出了各类ROS系统。微软机器人开发团队2007年也曾推出过一款“Windows机器人版”。6.机器人的运动规划为了提高工作效率,且使机器人能用尽可能短的时间完成特定的任务,必须有合理的运动规划。离线运动规划分为路径规划和轨迹规划。路径规划的目标是使路径与障碍物的距离尽量远同时路径的长度尽量短;轨迹规划的目的主要是机器人关节空间移动中使得机器人的运行时间尽可能短,或者能量尽可能小。轨迹规划在路径规划的基础上加入时间序列信息,对机器人执行任务时的速度与加速度进行规划,以满足光滑性和速度可控性等要求。示教再现是实现路径规划的方法之一,通过操作空间进行示教并记录示教结果,在工作过程中加以复现,现场示教直接与机器人需要完成的动作对应,路径直观且明确。缺点是需要经验丰富的操作工人,并消耗大量的时间,路径不一定最优化。为解决上述问题,可以建立机器人虚拟模型,通过虚拟的可视化操作完成对作业任务的路径规划。路径规划可在关节空间中进行。Gasparetto以五次B样条为关节轨迹的插值函数,并将加加速度的平方相对于运动时间的积分作为目标函数进行优化,以确保各个关节运动足够光滑。刘松国通过采用五次B样条对机器人的关节轨迹进行插补计算,机器人各个关节的速度、加速度端点值,可根据平滑性要求进行任意配置。另外,在关节空间的轨迹规划可避免操作空间的奇异性问题。Huo等人设计了一种关节空间中避免奇异性的关节轨迹优化算法,利用6自由度弧焊机器人在任务过程中某个关节功能上的冗余,将机器人奇异性和关节限制作为约束条件,采用TWA方法进行优化计算。关节空间路径规划与操作空间路径规划对比,具有以下优点:①避免了机器人在操作空间中的奇异性问题;②由于机器人的运动是通过控制关节电机的运动,因此在关节空间中,避免了大量的正运动学和逆运动学计算;③关节空间中各个关节轨迹便于控制的优化。
五、工业机器人分类
工业机器人按不同的方法可分下述类型:
工业机器人分类1.从机械结构来看,分为串联机器人和并联机器人。1)串联机器人的特点是一个轴的运动会改变另一个轴的坐标原点,在位置求解上,串联机器人的正解容易,但反解十分困难;2)并联机器人采用并联机构,其一个轴的运动则不会改变另一个轴的坐标原点。并联机器人具有刚度大、结构稳定、承载能力大、微动精度高、运动负荷小的优点。其正解困难反解却非常容易。串联机器人和并联机器人如图所示。
串联机器人 并联机器人2.工业机器人按操作机坐标形式分以下几类:(坐标形式是指操作机的手臂在运动时所取的参考坐标系的形式。)1)直角坐标型工业机器人其运动部分由三个相互垂直的直线移动(即PPP)组成,其工作空间图形为长方形。它在各个轴向的移动距离,可在各个坐标轴上直接读出,直观性强,易于位置和姿态的编程计算,定位精度高,控制无耦合,结构简单,但机体所占空间体积大,动作范围小,灵活性差,难与其他工业机器人协调工作。2)圆柱坐标型工业机器人其运动形式是通过一个转动和两个移动组成的运动系统来实现的,其工作空间图形为圆柱,与直角坐标型工业机器人相比,在相同的工作空间条件下,机体所占体积小,而运动范围大,其位置精度仅次于直角坐标型机器人,难与其他工业机器人协调工作。3)球坐标型工业机器人球坐标型工业机器人又称极坐标型工业机器人,其手臂的运动由两个转动和一个直线移动(即RRP,一个回转,一个俯仰和一个伸缩运动)所组成,其工作空间为一球体,它可以作上下俯仰动作并能抓取地面上或教低位置的协调工件,其位置精度高,位置误差与臂长成正比。4)多关节型工业机器人又称回转坐标型工业机器人,这种工业机器人的手臂与人一体上肢类似,其前三个关节是回转副(即RRR),该工业机器人一般由立柱和大小臂组成,立柱与大臂见形成肩关节,大臂和小臂间形成肘关节,可使大臂做回转运动和俯仰摆动,小臂做仰俯摆动。其结构最紧凑,灵活性大,占地面积最小,能与其他工业机器人协调工作,但位置精度教低,有平衡问题,控制耦合,这种工业机器人应用越来越广泛。5)平面关节型工业机器人它采用一个移动关节和两个回转关节(即PRR),移动关节实现上下运动,而两个回转关节则控制前后、左右运动。这种形式的工业机器人又称(SCARA(Seletive Compliance Assembly Robot Arm)装配机器人。在水平方向则具有柔顺性,而在垂直方向则有教大的刚性。它结构简单,动作灵活,多用于装配作业中,特别适合小规格零件的插接装配,如在电子工业的插接、装配中应用广泛。3.工业机器人按程序输入方式区分有编程输入型和示教输入型两类:1)编程输入型是将计算机上已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。2)示教输入型的示教方法有两种:示教盒示教和操作者直接领动执行机构示教。示教盒示教由操作者用手动控制器(示教盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍。采用示教盒进行示教的工业机器人使用比较普遍,一般的工业机器人均配置示教盒示教功能,但是对于工作轨迹复杂的情况,示教盒示教并不能达到理想的效果,例如用于复杂曲面的喷漆工作的喷漆机器人。
机器人示教盒由操作者直接领动执行机构进行示教,则是按要求的动作顺序和运动轨迹操演一遍。在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。
六、工业机器人性能评判指标表示机器人特性的基本参数和性能指标主要有工作空间、自由度、有效负载、运动精度、运动特性、动态特性等。

工业机器人技术学习笔记

本文主要介绍工业机器人技术学习的相关知识点,包括PLC、工业机器人、机械设计、生产设备等方面的内容。
?PLC的构成原理和编程
主要学习PLC的构成原理,如何编程,PLC485通讯应用以及变频器、伺服电机的应用,还有技术性能和常用编程元件等等。
?工业机器人的基础知识
了解特定品牌(如库卡、安川等)机器人本体结构。机器人故障处理、机器人坐标系应用、机器人安全区域设定、机器人圆弧指令、机器人逻辑控制语句的应用、机器人搬运(带案例分析)、机器人IO应用、机器人工具坐标系的应用、机器人码垛拆垛、机器人碰撞检测的设定及运用等等。
?机械设计的基础知识
主要学习电气绘图、装配体建模与标准件运用,组焊件的设计与工程实例运用等等。电气绘图主要学习VISIO、CAD、Eplan等绘图软件。
?生产设备的电控系统设计
主要学习实际工作站电控系统设计,这一个模块的学习实用性很强,直接还原实际工业场景,这样当学员进入到企业工作时,面对工业现场的各种问题也就比较心中有数了。

工业机器人机械结构如何指定标准

1、首先,工业机器人机械结构的标准是基于工业机器人的应用和使用需求,以及机器人的安全性、性能、质量等方面的要求指定的。
2、其次,机械结构的设计需要考虑机器人的应用需求,如负载能力、工作范围、精度、稳定性、速度、加速度、惯性等方面的要求。同时,也需要考虑机器人的安全性、可靠性、易用性等方面的要求机器人的机械结构是机器人的核心部分,包括机械臂、关节、传动系统、末端执行器等。
3、最后,在指定机器人机械结构标准时,参考现有的技术和经验,结合机器人的应用和使用场景,制定出相应的标准规范。

标签: #工业机器人机械结构如何指定标准#工业机器人的基本组成结构与原理实验报告