泓泰

2战时性能最好的战斗机是?,更好的战斗1122

admin

本文目录一览

英雄联盟和DOTA2哪个好玩

2战时性能最好的战斗机是?,更好的战斗1122-第1张-游戏信息-泓泰

首先就一款游戏来说,dota2在所有方面几乎都在lol之上,无论是游戏性,画面,还是厂商的良心,我来做几个比较,

dota2的所有英雄免费开发,lol除了每周几个少数周免英雄外,大多需要游戏金币或充值点券购买。

lol才用分区制,即有多个服务器,且单个服务器内所购买的英雄,符文,不在其他服务器共享,dota2则采用地区制,意思就是所有中国人一个服务器,所有美国人一个服务器,且服务器之间,共享等级,物件。

lol根据你等级的不同,会有一种叫召唤师技能的东西,在游戏前期,由于召唤师技能的不全,会让你吃很大的亏,dota2则没有。

lol有符文系统,该系统会大大加成英雄的初始能力,例如你跟对面选了同一个英雄,对面若是带着符文,你的没有,那虽然你们用的是同一个英雄,但你不会是对面的对手(dota2除单中模式外,双方不可使用重复英雄),而dota2没有符文系统。

lol的平衡性略差(求别说比dota平衡,真的,别说,都懒得反驳这种言论了),举个例子,有个被称为刀妹的英雄,已经被削弱了不下10次了,一个只靠削弱来维持平衡的游戏,敢自称有平衡性?dota2也不能说100%的完美平衡,因为也有一代版本一代神的说法,但相比lol,确实好的太多了,举个例子吧,dota2的职业比赛,最后只有10个不到的英雄,没有在比赛中出场,可见每个英雄都几乎有着他们自己的地位,而且也绝不会把一个英雄往死里削弱来维持平衡。

lol战术十分单一,5人一般为上单,中单,打野,adc,辅助,游戏时很难超出这个框架,也就是玩家们其实已经在设计师设计好的大战术里,以自己的小战术来互相对弈罢了,而dota2则自由得多,并没有什么固定的分路,刚三(原指一条路上3V3,现多指3人一路来达到对对方的压制),双游(两人游走gank,lol曾经出现过这个战术,但很快被一次改版杜绝了),双中(一个辅助与一个大哥)等,之后的战术也层出不穷。

团战,lol的团战,说白了就是技能乱甩,因为lol的英雄技能cd普遍较快,qwer滚键盘式的团战,而dota2的团战则讲究许多,不少影响的技能都有不短的cd,在团战一触即发时,就需要考虑技能对于不同敌人或友军施加后的收益等,而绝非技能乱甩。

地图,lol地图较小,dota地图较大,且有优势路,劣势路之分,优势路的一方,小兵的相汇处往往会离己方防御塔较近,而劣势路反之。

野怪,dota2的野怪对英雄有仇恨保留,在你攻击野怪逃离后,野怪会追击一段距离,而lol则没有,故在dota中,往往可以利用追击的野怪,来引己方士兵,达成控制兵线,让士兵代替打野等战术。

游戏胜负,lol一旦在前期被打崩,只要对面不要浪的一个个送,基本是无望翻盘,而dota2处于较大的劣势后,通过不同的战术,有极大的可能翻盘,曾有双方对峙整整3小时,最终一方大劣势翻盘的事迹。

画面,现在是2014年了,lol这款游戏,若是要作为2014年的游戏的话,这画面实在是无法直视了,因为这游戏的引擎是好多年好多年之前的东西了,dota2的话画面要比lol好得多,而且不用担心电脑带不动,只要把特效开到最低,08年的电脑也能带。

难度,dota2在操作上要比lol略微困难些,lol在操作上没有太大的要求,例如lol中,较为难以上手的盲僧,卡牌大师,若是放到dota里,根本不算操作难的英雄,而dota中的卡尔,米波等英雄,放到lol中,恐怕没人会选了。

游戏人数,由于lol只要qq就能登录,故人数超过dota2,只可惜这些人之中,却找不出5个人来打败韩国战队,年年输,相反,dota2就在今年7月,获得了国际邀请赛的冠军与亚军,所有中国战队共计拿回国800W美金的奖金。

两个游戏的对比我就放在这里了,纯手打,我也不建议楼主到底要去选哪个,lz根据这个比较,自己来判断适合自己的吧。

搏斗比战斗好因为什么?

搏斗的话更接近于切磋,不会出现特别恶劣的伤害,但战斗的话可能会出现生命的丧失等恶劣行为所以搏斗比战斗好。

搏斗与战斗的区别在于搏斗多是指两个人之间的肢体一类的冲突,战斗至少从人数和攻击方式与搏斗都是有明显区别的。

搏斗比战斗好的具体解释:

首先我们知道战斗是指二个人以上的许多人对另外一方进行的一种方式如成争对阵的双方,可以是远距离也可以是近距离之间,也可以利用器械或肢体而进行的搏斗。

而搏斗则主要是指两个或者多数人之间肢体间或者利用器械的冲撞冲突或者进行的实战行为,相比较而言战斗比搏斗的斗争性更强场面宏大壮观(如战争中的敌我双方)。

2战时性能最好的战斗机是?

ME262最先进,对战斗机有革命性意义,但是很不完善,并非最强。北美公司的 P-51D 虽然单项性能并不拔尖,但各方面综合来说性能比较均衡。

在特定时期,符合作战需要的就是优秀战斗机,将不同年代不同用途的战斗机作横向比较,仅从几个性能数据上寻找所谓“最强”是毫无意义的。

零式在 1943 年以前横扫太平洋,当然是好飞机;专门克制零式的 F6F 成功完成了设计使命,为飞行员提供最大限度的保护,也是好飞机;P-38 闪电虽然在二战中损失率高达 30%,但它每次都是在最艰苦的条件下完成远程护航任务,当然是好飞机;雅克-3 尽管高空性能不佳,但它的使命是在中低空掩护地面部队,德国人“避免与雅克在 5 千英尺以下格斗”就是最好的赞誉。

从这点上说,作为舰载机开发的海盗一开始由于着舰性能和部件的通用性问题,不能在 1943 年上舰参战,可以说是一种不成功的设计。此后陆基作战开始显现出格斗优势,打遍南太平洋无敌手,并且发掘出多种用途成功的兼任俯冲轰炸机,这才跨入好飞机的行列。由于海盗主要用在太平洋战场,所以在这里将 F4U-4 与日本二战末期的一些型号作个简略比较,由于没能得到这几种战斗机具体交手的实战经过,所以做这种假设的比较时也颇为踌躇,仅仅提供数据上的参考。(尽管这些日本战斗机尚未发展成熟,这里更要撇开飞行员的经验和技术,撇开日本人一直没能解决的发动机故障、机炮故障、通信设备欠缺等等。)

中岛公司的四式“疾风”在 1944 年上半年出现在中国战区,美国飞行员曾经用野马和雷电与其交战,认为这是日本在二战中最好的战斗机之一,在中低空的平飞速度最高可达到每小时 630 公里,但我认为 F4U-4 在面对疾风时依然占据优势。理由:海盗的最高速度不输疾风,爬升率和高空高速下的操纵性更是高出一筹,充分利用垂直优势,在任何状态下都能取得上风。如果是海盗被疾风抓住尾部,可以立即进入俯冲,F4U-4 在 400 节的俯冲速度下依然轻松自如,不管是连续的下降滚筒,或者作一边下降一边做防御的剪式机动都可以甩脱后者,而 400 节的 Ki-84 基本已经失去操控能力,飞行员只能祈祷机翼还长在机身上;F4U-4 被咬尾也可以进入爬升,因为它的爬升率远远高于 Ki-84,随着高度的增加,从 2 万英尺开始,Ki-84 性能急速下降,而 F4U-4 的速度曲线升到第二个拐点工作升高,如果爬到 3 万英尺,F4U-4 可以轻松的掉头回来攻击,此时的 Ki-84 是既不能打又不能逃的死鸭子。反过来,如果是疾风被海盗抓住尾部呢?日本飞机在这种状态下只能通过水平机动摆脱攻击,但也只能摆脱一时,海盗飞行员只要注意保持高度,一次次高速掠过射击,然后用急跃升保存能量,再次爬高占据位置,迫使疾风在一次次的高 G 规避中损失能量。

再来看看川西公司的紫电/紫电改,这是日本海航在二战末期装备的一款截击机。可以说这种战斗机的设计有点背离日本战斗机一向以来强调盘旋格斗的特色,而是突出在中低空的爬升和俯冲能力。使用方式与 Fw 190 相似,如果战斗发生在 2 万英尺以下,紫电改是相当棘手的敌人,更何况在战争后期操纵紫电改的是 343 联队那些老手。但它的速度没有疾风那么高,在低空低速下的爬升性能和操作手感与 F4U-4 相近,翻滚不如后者,海盗的副翼更加有效。由于战争末期不少部件采用木质材料,紫电改的机体相对脆弱,不能承受高过载的机动。它也没有双黄蜂引擎那样的高空增压涡轮,在 2 万英尺以上性能开始下降,更不用说 3 万英尺高度的战斗了。川崎公司的 Ki-100 五式战斗机其实就是采用气冷发动机的飞燕,特性与紫电改类似,稍有不如,这里列出数据,不做比较。

最后是意犹未尽的比较,北美公司的 P-51D 虽然单项性能并不拔尖,但各方面综合来说性能比较均衡,成为衡量好战斗机的标准样本之一,当然,拥护喷火 XIV、P-47N、拉-7 的也不在少数;德国的高空涡轮增压技术始终没有发展成熟,因此没有什么“全能战斗机”,Ta 152H 是种过渡产品,Do 335 的设计也远未完善,它们都是截击机;苏联的雅克-3 在 2 万英尺以下也是强悍无敌,这取决于它的使用目的——掩护地面作战,这些专用战斗机只能说在某方面具有一定特长,这里用 F4U-4 与最均衡的 P-51D 作个大致比较:

速度:海盗胜出,F4U-4 在 P-51D 发挥最好的高度上还胜出 10 英里(25,000英尺,447:437mph)。都用战斗状态下引擎出力的话,F4U-4 的平均水平加速度是每秒 2.4mph,高于 P-51D 的每秒 2.2mph,只落后于双发的 P-38L 的每秒 2.8mph。

爬升:海盗胜出,F4U-4 平均每分钟多爬 800 英尺。

滚转:海盗胜出,F4U-4 是滚得最快的战斗机之一,如果都顺着扭矩方向滚转的话,只有 P-47N 每分钟比它多转 6 度。

俯冲:野马胜出,但还是比不上 P-47D 和 P-38L。不过 F4U-4 和 P-51D 具有更高的临界马赫数,可以持续俯冲更长距离。

水平转向:海盗胜出,转弯半径更小,转过一圈的时间更短,但不如喷火和闪电。

操作性:很难说,早期的 F4U-1 曾经得过“少尉谋杀者”的外号,但这只能说明它在低速状态可能会失速失去控制,实际上失速并不可怕,可怕的是发作前毫无征兆。拿 F4U-4 来说,每次失速掉机翼前总是会剧烈振颤一段时间,而 P-51D 掉翅膀之前是毫无征兆的。当失速后,野马往往向下翻滚副翼失去响应,重新控制并恢复飞行状态至少需要 500 英尺高度,F4U-4 的最低速度比 P-51D 还要低 30mph,从这点上来说,低速下的控制性是海盗更好。至于高速下的状态,根据绝大多数飞行员的体验,F4U-4 的操纵手感和反应之间的平衡性只能用完美来形容。

火力:海盗胜出,装备了 6 挺 12.7 毫米机枪或者 4 门 20 毫米机炮的 F4U-4 可以干掉任何战斗机。同时具有强大的武器携带能力,属单引擎战斗机之冠,甚至超过一些双引擎的中型轰炸机。

生存力:海盗胜出,F4U 家族以粗壮强悍见长,就连美国陆航都承认海盗的生存能力超过同样粗壮的 P-47,气冷发动机相对液冷发动机在可靠性方面的优越感是显而易见的。

航程:野马胜出,F4U-4 不带副油箱接近相当于 P-47D-25-RE(1,800 英里),后者可以深入护航飞到柏林上空,但是不如 P-51D-25-NA 的 2,300 英里。

视野:野马胜出,尽管起飞以后海盗的视界会很广阔,但是 P-51D 的全向视野是二战战斗机中最好的,这点已是公论。

暗黑破坏神2 亚马逊 是弓系好 还是标枪系好?

弓都是双手的。
投掷是要消耗的,伤害里面包含了你对损失钱的愤怒,所以伤害要高。
抛光了回程再买,活着用剩一根去维修,也可以在地上捡。

标枪系
要是对方是非电免的怪,用标枪发闪电之怒(标枪系大技)非常吃香。
在房间里,面对一群怪,伤害和清怪率都很高。
亚马逊标枪基本靠这招,还有就是闪电刺也可以(在标枪用完的时候)。
对于标枪数量太少的问题,一般可以配备白色的标枪两组(身上和手上各一组),然后扔就是了,用完了可以再买。
也可以配备一些带颜色的标枪,不过最好有回复数量,平时怪少用刺,怪多了就扔两根,可以用很久的。
标枪之类的,用剩一根就取下来,拿去维修,比再买要便宜。(弓箭其实也会用完不是吗?)

弓系的话,多重箭比炮轰好很多,玩多了暗黑之后,你会发现炮轰的瞄准简直太烂了,而且速度也有问题,而且有时发不出来,多重箭要快很多而且也比较快能加满级。

加点什么的,自己喜欢怎么加就怎么加,暗黑是自己的暗黑,不一定要按照一定的别人的套路加点的,弓系可以选择一种元素然后专门加点。喜欢多重箭就加满咯,喜欢那个技能就多加一点,看看技能之间的影响。
例如玩火箭的,就看看火箭的技能你想用一招,然后看看什么技能对它有加成,然后把相应技能加满就好了。

遇到与自己的修炼方向相克的怪,能绕开就尽量绕开吧,或者靠队友或佣兵杀掉咯。一般关卡末的boss都是通吃的,所以过关不是问题,至于中间的任务,其实不做也没关系的。

最后说一下嘛,个人觉得亚马逊还是标枪系更好用,闪电之怒的伤害也超过了同期的闪电法师,尤其在牛关好打。

当然,我最喜欢用的还是闪电法师。

美国的F22 F23 战斗机在1990 年就研制出来了。为什么二十年后的今天还没装备。

美国空军现在已经装备了F22,没有装备F23的原因是:
美国空军在现在需要和符合的是f22的设计。就如同已经很富有,可以买一辆法拉利跑车,但毕竟不需要一辆F1赛车去马路上狂奔。
  F23展现了与F22全完不,同的设计概念,也体现了诺斯罗普/麦道设计团队对未来空战要求的理解。
  总体布局F23的总体布局在很大程度上继承了诺斯罗普概念设计方案的特点。其菱形机翼+V形尾翼的布局,介于传统正常布局和尢尾布局之间。单座,双发,中单翼,腹部进气。
  和F22一样,F23最终并没有采用一度呼声颇高的鸭式布局。事实上从七家公司的方案无一采用鸭式布局这点上就能看出美国人的倾向了。在一定程度上,这是受了几年前七巨头讨沦会上通用动力的影响——哈瑞-希尔莱克说“鸭翼最好的位置是在别人的飞机上。”笔者在《王者之翼》中曾提到过,拒绝鸭式布局的原因之一是配平问题。如果按照能够进行有效的俯仰控制原则水设计鸭翼,那么鸭翼就无法配平机翼增升装置产生的巨大低头力矩。如果需要配平增升装置,那么鸭翼必须增大,对机翼的下洗也随之增大,反过来削弱了增升效果。而且为了防止深失速,可能还需要增加平尾。另一方面,从跨音速面积律来说,大鸭翼很难满足跨音速面积律的要求,增大了机身设计难度和超音速阻力——这对于强调超巡的ATF(特别是F23)来说,尤其难以接受。
  而拒绝鸭式布局的另一个重要原因是隐身问题。鸭翼的位置、大小、平面形状很难和隐身要求统一起来。隐身设计的一个重要原则是尽量减少(但不可避免)机体表面(特别是迎头方向)的不连续处,而鸭翼恰恰难以做剑这一点。如果还希望把机翼前后缘对应的主波束数量减至最少(也就是前后缘平行),将带来更大的设计困难。
  虽然根据美国空军的要求,ATF必然兼顾隐身和机动性,但各个公司设计思想不同,飞机性能偏重也必然不同。从F23最终选择了V形尾翼而非传统四尾翼布局来看,诺斯罗普追求隐身的意图相当明显,他们的的设计可大大减小飞机的侧面雷达反射截面积。由于减少一对尾翼,飞机重量和阻力也可减小,对于提高超巡能力也有助益。但随之而来的是操纵面的效率问题和飞控系统的复杂化。
  机身为满足“跨战区航程”的要求,ATF必须有足够大的载油量而考虑到隐身要求(飞机不能 副油箱),所有燃油必须由机内油箱装载。因此无论是F22还是F23,都必须提供足够的机内容积——几乎相当于F一15的两倍!从机体尺寸来看,F23机身长度增加明显,但仍然有限,因此其机内容积增大必然主要来自飞机横截而积的增大。如果从跨/超音速阻力方面来考虑,飞机横截面积增大不利于按照跨音速面积律来设计飞机。适当地拉长机身,有助于平滑飞机的纵向横截面积分布,减小跨/超音速阻力。但机身加长,必然导致飞机纵向转动惯性增大,这对于提高飞机敏捷性和精确控制能力是不利的。苏一27的机身长度和F23相近,有飞过苏一27的飞行员说,该机操纵惯性较大,并不是那么好飞。
  事实上,仅仅从机身设计的特点我们就可看到F23和F22在设计思想方面的差异。从机内载油量来看,F23载油10.9吨,F22载油11.35吨,考虑到机内弹舱设计载弹量相同(之所以说设计,是因为F23的格斗弹舱还停留在图纸上),那么F23的机内容积不会大于F22。而F23的机身长度却明显长于F22(后者由于尾撑和平尾的原因,实际机身长度从有18米多),这意味着即使在飞机最大横截面积相当的情况下,F23也可以获得更平滑的横截面积分布(也就是更小的跨/超音速阻力),当然也获得了更大的纵向转动惯量。不难看出,为了解决横截面积增大带来的阻力问题,F23和F22的选择截然相反,前者选择了速度性能而牺牲了敏捷性和精确控制能力。这也在一定程度上反映了两大集团对未来战斗机的定位。在外观上,F23的机身颇有些洛克希德SR一71黑鸟的风格,看上去就像把前机身和两个分离的发动机舱直接嵌到一个整体机翼上一样。前机身内主要设置雷达舱、座舱、前起落架舱、航电设备舱和导弹舱。前机身前段横截面近似一个上下对称的圆角六边形,然后逐步过渡到圆形潢截面,最后在机身中段与机翼完全融合。后面的进气道和发动机舱横截面仍是梯形,并以非常平滑的曲线过渡到机翼或后机身的“海狸尾巴”,这有助于减小相互之间的干扰阻力。前面提到过,空军取消了采用反推装置的要求,而诺斯罗普并未修改设计,在后机身形成非常明显的“沟槽”,带来不必要的阻力增量。
  边条边条翼布局在大迎角时比鸭式布局的升力特性有更大优势——这是影响诺斯罗普选择F23整体布局的因素之一。就传统边条而言,其展长的增大(面积也增大)对提高大迎角时的升力有明显好处。但展长越大,大迎角下产生的上仰力矩也越大;成为制约边条大小的一个因素。但显然F23的边条不同于三代机上的传统边条。其三段直线式窄边条设计相当有特点,从机翼前缘一直向前延伸到雷达罩顶端。这种边条倒是和F22的边条颇为类似。
  F23的边条具有以下几个功能:产生边条涡,在机翼上诱导出涡升力,改善机翼升力特性;利用边条涡为机翼上表面附面层补充能量,推迟机翼失速;起到气动“翼刀”的作用,阻止附面层向翼尖堆积,推迟翼尖气流分离(事实上由于F23机翼根梢比很大,高速或大迎角下可能会有明显的翼尖分离趋势);大迎角下机头涡的分离,提供更好的俯仰和方向稳定性——直到第三代超音速战斗机,大迎角下机头涡不对称分离的问题仍未解决,这是限制飞机进入过失速领域的一个重要因素。
  但如果从传统观点来看,F23的边条太小,能否产生足够强的涡流,起到应有的作用还是个疑问。如果确实可以,那么一种可能性就是该机边条的作用原理有别干传统边条,另一种可能就是还有其它的辅助措施来协助改善机翼升力特性。有资料提及,“机头和内侧机翼所产生的涡流对尾翼没有什么影响”,这可能意味着F23机翼内侧可能有某种措施以产生涡流,起到和边条涡类似的作用。在F22的进气道顶部各有两块控制板,用于控制机翼上表面的涡流。F23可能也有类似设计——其机翼内侧有进气道附面层的放气狭缝,不排除附面层气流经过加速后由此排出,借以改善机翼上表面气流状态的可能性。
  机翼巨大的菱形机翼可以算是F23最突出的外形特征之一。机翼前缘后掠40度,后缘前掠40度,下反角2度,翼面积88.26平方米,展弦比2.0,根梢比高达12.2。诺斯罗普之所以选择这样一个占怿的机翼平面形状,最重要的影响因素就是隐身。F23的隐身技术继承自B一2,两者有类同之处——其中之一就是X形的四波瓣反射特征。要实现四波瓣反射,机翼前后缘在水平面内必须平行。这样一来,诺斯岁普没有更多的选择:要么采用后缘后掠设计,形成后掠梯形翼,基本类似B一2的机翼;要么采用后缘前掠设计,形成对称菱形翼。
  采用后掠梯形翼,好处是后掠角选择限制较小,可以根据需要进行优化;但和三角其相比,缺点也很明显:结构效率较低;内部容积较小,对于要求跨战区航程的ATF而言影响尤大;气动弹性发散问题较明显;机翼相对厚度的选择受限制,不利于选择较小的相对厚度来减小超音速阻力。如果选择后缘前掠设计,当机翼前缘后掠角(后缘前掠角)较小时,这种机翼更接近于诺斯罗普惯用的小后掠角薄机翼(典型的如F-5、YF—17),所面临的问题则和后掠梯形翼相同——超凡的续航能力和优良的超音速性能是这种机翼难以解决的巨大矛盾。而采用大后掠角的对称菱形翼,在隐身上是有利的——F一117采用高达66.7度的后掠角,就是为了将雷达波大幅偏转出去——但气动方面的限制已经否决了这种可能性:展弦比太小,气动效率极低,这种飞机造出来能不能飞都是个问题。而且后缘前掠角太大,将使得机翼后缘的增升/操纵装置的效率急剧降低直至不可接受。
  综合权衡之下,只有采用中等后掠角的对称菱形翼,才能在隐身、续航、气动等诸方面取得令人较为满意的平衡点。至于为什么恰好选定40度后掠角,笔者认为,在其它条件基本得到满足的情况下,优化边条涡的有利干扰应该是影响因素之一。不过,既便如此,40度的后缘前掠角也严重影响了机翼后缘气动装置的效率:F23必须使用更大的襟翼下偏角来保证增升效果,但这又增大了机翼上表面附面层分离趋势,不但增大了附面层控制难度,也反过来降低了增升效果另一方面,F23的副翼效率也不佳,导致其滚转率不能满足要求,而这最终影响到了竞争试飞的结果。
  就机翼的特点来看,诺斯罗普的考虑优先顺序首先是隐身,其次是超音速和续航能力,最后才是机动性和敏捷性。
  为改善机翼升力特性,F23采用了前缘机动襟翼设计,其展长约占2/3翼展。有资料称该机采用的是缝翼设计,但在F23试飞照片上看不出缝翼的特征。而且从隐身角度考虑,当缝翼伸出时,形成的狭缝将成为电磁波的良好反射体,这对于诺斯罗普来说是绝对不能接受的。
  事实上,前缘襟翼对飞机的隐身特性仍然有不利影响。最好的解决手段是在AFTI/F一111上验证的任务自适应机翼技术,可以避免机翼表面的不连续和开缝,不过遗憾的是直至今天这一技术仍未投入实用。对此,F22采用了从F一117上继承来的菱形槽设计,使得襟翼偏转时该处成为低雷达反射区。而极力追求隐身的F23竟然不考虑这个细节,唯一的解释就是在该机的典型作战状态(超巡)时,机翼为对称翼型,不需要偏转襟翼。
  位于F23机翼后缘的气动操纵面设计相当有特色,可算是F23的亮点。有的资料称,机翼内侧为襟翼,外侧则是副翼,但实际情况远非这么简单。简单的襟翼、副翼之分,并不符合诺斯罗普在F23上体现出来的“一物多用”的设计思想。就F23的试飞照片来看,内、外侧控制面均有参与增升和滚转控制。因此笔者将其定位为“多用途襟副翼”。之所以说“多用途”,是因为这两对控制面除了传统襟副其的功能外,还兼有减速板和阻力方向舵的作甩当内侧襟副翼同时下偏,外侧襟副冀同时上偏,在保证机翼不产生额外升力增量的同时,产生对称气动阻力,起到减速板的作用;当只有一侧襟副翼采用上/下偏时,则产生小对称阻力,起到阻力方向舵的作用——这肯定是从B一2的设计继承发展而来的。这种设计相当新颖,有效地减轻了重量,但飞控系统的复杂性和研制风险则不可避免地增大了。
  尾翼 V形尾翼设计并非诺斯罗普首创。1956年法国C.M.175教练机就采用了V形尾翼。洛克希德的F一117A也是如此(不过比较特殊,只提供方向控制)。但在强调机动性的未来战机上采用V形尾翼设计,F23是第一个。
  F23的v形尾翼设计相当独特。为了保证4波瓣雷达反射特性,平尾前后缘在水平面内的投影分别和机翼前后缘平行。这使得该机尾翼看起来相当巨大。考虑到大部分雷达反射发生在与水平面成±30度的范围内,F23采用了将尾翼外倾40度的设计,以确保雷达波不会被反射回接收机,但相应的尾翼效率也降低了。相比之下,F22采用91、倾27度的设计,处F隐身设计的边缘,属于隐身和机动综合权衡的结果。按照公开的说法,F23出于大迎角机动性的要求,其尾翼采用宽间距布置,完全避开了边条和机翼内侧涡流,因此改善了剧烈机动状态下俯仰、滚转和偏航控制。
  就隐身而言,F23的尾翼设计显然是成功的,但其气动效率却不免令人担心。偏航、俯仰、滚转,二轴控制全部包揽。一物多用固然好,但重要却往往被人忽略的一点是:尾翼的总控制能力是有限的,某个轴占用较多的控制能力,必然会削弱其它轴的控制能力。当飞机陷于比较复杂的状态时,F23的尾翼未必能兼顾。看看后来F一22的过失速试飞情况就知道了,操纵面的控制负荷是相当重的,而且还要加上推力矢量控制才行。当然,换个角度想,可能诺斯罗普压根儿就没有考虑超火迎角飞行的控制问题。能够保证大迎角范围内不出现气动发散的情况(诺斯罗普称,风洞数据显示F23可以在所有迎角范围内稳定飞行,但F23的试飞迎角最终也没有超过25度),是诺斯罗普在这方面所作的极限了。毕竟机动性并小是F23的第一优先目标,过失速机动性就更不用说了。
  飞控系统和推力矢量控制 随控布局经过长期验证在ATF设计阶段已经相当成熟。F23应用随控布局技术、为此采用电传飞控系统并不令人意外。不过由于最终竞争失败,外界对该机的飞控系统细节了解极少。前面已经提到,F23在设计上具有鲜明的“一物多用”的特色。由于减少了操纵面和相应的控制机构,有助于飞机减轻重量和减小阻力,对于改善飞机隐身特性也是相当有利的。但除了操纵面负荷问题外,这种设计必然面临的一个考验就是飞控系统的复杂化。固然,在已经成功的B一2上也可以见到类似的设计,不过必须看到的是,对于不需要进行复杂机动的轰炸机而占,这种一物多用的设计问题不大;然而战斗机即使在常规条件下的机动,其操纵面的偏转控制也是相当复杂的,一物多用的设计必然会加大飞控系统的复杂程度和研制风险。如果还要考虑超常规飞行的话,飞控系统的设计难度可想而知。飞控软件的编制是飞控系统设计难点之一。自电传飞控系统实用化以来,大多数一流战机都在这上面栽过跟头。1992年4月25日,F22因为飞控软件问题造成“飞行员诱发振荡”,撞地损毁。后来F一22试飞阶段还不断对飞控软件进行改进升级。连基本按照常规设计的F22飞控系统都有这么多麻烦,非常规设计的F23飞控系统就更难说。在对设计风险的判断上,美国空军还是比较准确的。
  如果F23采用了推力矢量控制系统,一物多用带来的控制面负荷问题町能会得到缓解,对改善机动性和敏捷性也有好处。但诺斯罗普最终放弃了推力矢量,以确保其首要目标——隐身能力。因为如要应用推力矢量控制技术,就必须更改后机身设计,不仅增大了飞机重量,也导致飞机雷达反射截面积(主要是后向)增大和红外隐身能力下降——因为必须取消那个沟槽式尾喷口设计。这并不符合诺斯罗普的设计思想。
  进/排气系统 进气道和发动机一级压气机是喷气机前方雷达反射截面积的主要来源,设计稍有不慎即可导致为隐身所作的努力全数付诸东流。通常在中、高空飞行的飞机,如F-117、B-2,其主要威胁来自下方,因此可将进气道和喷管置于机体上表面,以机身遮挡主要雷达反射特征。但对于制空战斗机而言,这一威胁定律显然不适用。如果住所有方向上的威胁具有同等可能性,在这种情况下依据什么原则来设计飞机呢?并没有一个人人满意的答案。从F23的设计来看,在没有适用的隐身规则的情况下,其进气道设计选择了遵循机动性和进气要求。
  发动机进气道是一个空腔结构,本身就是良好的雷达波反射体。而发动机一级压气机高速旋转的叶片不仅是强反射源,其反射波频谱甚至足以成为飞机型号的识别特征。要解决隐身问题,就必须首先解决这两个麻烦。解决途径之一是遮挡。F-111、幻影那种三元进气道,其激波锥可以在一定程度上遮蔽进气道内部和压气机的反射波,但问题是激波锥本身就是一个强雷达散射源。另一个也是更常采用的途径是S形进气道,并在进气道内敷设吸波材料。不过S形进气道并不是想象中那么简单,设计不当可能导致严重的总压损失。没有大量的验证,设计时少不了要吃苦头的。
  F23的进气口位于机翼下方靠近前缘的位置,类似苏一27的设计,这显然是处于大迎角条件下进气要求的考虑。其横截面为梯形,除了垂直面上的斜切结构外,在水下面上也略有斜切,可以起到改善大迎角和侧滑条件下进气效率的作用。在进气口前方,设计有多孔式附面层吸除装置(机翼下表面未喷漆区域),并经机翼上表面排出一一由于进气口靠近机翼前缘,附面层厚度不大,因此不需要采用大型的附面层隔道,有助于减小雷达反射特征。在发动机舱卜表面还设计有辅助进气门(位于附面层排放狭缝旁边的带锯齿后缘的梯形板),用于在起降和低速状态下满足发动机的进气需要。根据隐身原则,进气道自进气口开始向内、向上弯曲,从正前方根本不可能看到压气机叶片,可获得较好隐身效果。此外,F23采用了固定式进气道设计,以避免可调式进气道的调节斜板之间的缝隙和台阶产生的雷达反射。压缩斜板为二波系设计,并按照F23的预计巡航速度作了优化。
  F23的发动机喷口设计带有明显的B-2风格。沟槽状喷口位于V形尾翼之间扁平的“海狸尾巴”上,以耐热材料作为衬垫。喷口顶端铰接一块无边形调节板,用于调节喷口大小。在海狸尾巴、V形尾翼、沟槽侧壁的屏蔽下,来自燃烧室的热喷流在沟槽段与冷空气混合降温(二元矩形喷口使得喷流更容易与周围空气混合),然后再排出机外,红外特征较之常规战斗机明显降低。除了隐身作用外,笔者推测,F23的喷口设计可能还具有引射增升的作用,V形尾翼则起到了类似端板、增强增升效应的作用。不过这一推测没有获得资料证实。
  发动机 发动机是飞机的核心部件,F23的优越性能很大程度是建立在YF-119/120的巨大推力基础上的。超巡能力和跨战区航程对发动机提出了极为严苛的要求。为满足性能要求,需要采用具有中等增压比的高压压气机、较大增压比的低压压气机、较高的涡轮前温度和较大的非加力状态推力。
  为满足不加力推力的要求,通用电气选择了变循环技术。其YF-120发动机上使用了一种特殊的可变面积外涵道引射器,通过控制内、外涵道空气流量来改变涵道比。在超音速巡航状态下,YF-120以接近涡喷发动机的方式工作(涵道比接近0),只有少量外涵道引气用于冷却;亚音速飞行时,YF-120以涡扇发动机的方式上作(最大涵道比约0.3)。YF-120为双转子方案,采用同轴反转技术,两级低压压气机,高/低压涡轮均只有一级。采用三余度数字式发动机控制组件。和F-100比,其零件数量少了40%。而YF-120的军用推力高达125千牛,甚至超过早期F-100的加力推力。
  普·惠则选择了相对保守的涡扇发动机方案,当然在设计上有明显进步,使得YF-119即使不采用变循环技术也可以满足JAFE的要求。YF-119也是双转子方案,3级低压压气机,6级高压压气机,高/低压涡轮各一级。其不加力推力明显比YF-120要低,只有97.9千牛。有意思的足,第一种实用的变循环发动机J-58(用于SR-71)正是普·惠在50年代研制了。对于为何放弃自己首创技术,普·惠方面并没有任何解释。后来通用电气承认,YF120的技术有些超前了,风险确实比YF119要高。
  武器系统 由于ATF暂时放弃了对地攻击能力的要求,因此在F23的备选武器上并没有对地攻击武器。当初为ATF准备的主要对空武器是先进中距空空导弹(AMRAAM,后来的AIM一120)和先进近距空空导弹(ASRAAM,后来的AIM-132)。由于AIM-132进度严重拖延,迫使美国空军以先进响尾蛇改型(即AIM-9X)作为应急措施。今天,AIM-9X和AIM-120已经成为F/A-22的主要武器。
  F23继承了诺斯罗普最初方案的内部武器舱设计。格斗导弹舱和主武器舱串列布置于前机身内。格斗导弹舱较小,只能容纳2枚AIM一9导弹。主武器舱较大,可容纳4枚AIM一120导弹。载弹量和F22相同。由于AIM一120改进后弹翼缩小,因此在F/A-22的主武器舱内可容纳6枚。但F23布置AIM-120A的方式就是上下前后错置排列,和F22对称排列不同,显示其主武器舱尺寸可能较小,因此不一定能放得下6枚AIM一120改型。有资料提及,F23的主武器舱挂架是可以升降的。需要发射AIM-120时,挂架伸出机外,将导弹置于自由流中再点火发射。此方式和F22的弹射发射方式不同,完全避免了导弹在穿越机身表面气流时状态发生异常改变的可能性。当然,重量和机内容积的代价是免不了的。
  没有资料提及在F23上AIM-9的锁定/发射模式。但这其实是一个很有意思的问题。因为在封闭的导弹舱内,AIM-9的导引头是不可能捕获目标的。
  就这个问题,笔者和许多同好曾经进行了长时间的讨论,反复观看F-22武器系统试验的录像,最终形成较一致的看法:F-22在格斗状态下,格斗导弹舱处于开舱状态,将AIM-9X伸出,以解决导引头锁定问题。F23完全可能采用类似模式。结合AIM-120的发射模式,笔者推测:挂载AIM-9的可能也是升降式挂架,格斗状态下开舱门将AIM-9伸出机外。由于完全伸出机外,没有机身侧面屏蔽,AIM-9可以获得比在F22上更好的视界,而且也不需要F22上面的隔热/排焰装置。开舱状态可能会给人比较怪异的感觉,但事实上开舱门伸出导弹所带来的阻力并不会比传统 架的阻力更大,因此不会对飞机性能有太大的负面影响。这种模式唯一的问题在于格斗状态下飞机的雷达反射截面积会明显增大。不过未来在进入视距内空战的情况下雷达隐身意义不大;二来现代空战格斗时间明显缩短,开舱射击暴露时间有限,因此不至于对F23构成严重威胁。对于ATF,特别是F23这利飞机来说,不进入格斗才是最佳战术。
  除了空空导弹外,M-61火神航炮仍然将作为ATF的固定武器。F23上并没有安装M-61,但按照设计方案,航炮将安装在机身右侧,主武器舱上方。
  可维护性设计·维护口盖·舱门 ATF是第一种在设计之初就提出可维护性指标的作战飞机,也是第一种在设计阶段就邀请机务部门参与的战斗机。美国空军如此重视可维护性,很大程度上是受F-15A的影响——F-15A刚刚服役时,故障层出不穷,飞机频频趴窝,人称“机库皇后”。
  对于传统飞机来说,维护口盖在机身表面的覆盖率是衡量其可维护性的一个重要参考指标。覆盖率高,意味着机载设备可按近性好,机务人员不必将时间消耗在无用但必需的工作上——最典型的就是为了接近设备A,必须先拆下设备B、C、D…;处理完后再按相反顺序装回去,而B、C、D其实对于A的维护毫无意义。
  但是,对于隐身飞机来说,情况完全不同。表面波的存在,使得机身表面任何开口都可能严重破坏飞机隐身特性。因此,“非必要绝不在机身表面开口”是隐身飞机设计必循的原则。在这种情况下如何改善飞机的可维护性呢?途径之一是集中处理。不再是哪里有需要接近的设备就在哪里开设维护口盖,而是确定一个集中区域,将接近最频繁、维护量最大的设备全部集中到那里,以一个大的维护口盖来解决。途径二是建立在途径一基础上的,即尽量利用飞机必需设置无法省略的舱门作为维护口盖。例如武器舱、起落架舱。如果能将需要维护的设备或接口集中到这些舱内,甚至可能不必在机身表面再开其它维护口盖。为保证反射波束的一致性,飞机表面所有口盖、舱门都必须采用锯齿状设计,其锯齿前缘在水平面的投影应平行于飞机主要的反射边缘。不过,和通常想象的不同,多锯齿前缘设计并不是最佳的控制雷达反射措施。这种设计实际卜是隐身和重量要求折巾的结果。就隐身的角度来看,最理想的是单一锯齿设计。但为了保证单一锯齿的结构强度,必须要付出相应的重量代价。在ATF的严格重量要才下,F23和F22均采用了多锯齿设计。然而在后来的F-22上,经过空军同意,该机减少了锯齿数量,以改善隐身特性。
  
  

标签: #2战时性能最好的战斗机是#更好的战斗1122